• Sat. Jul 13th, 2024

Effect of digital multimedia on the adoption of agricultural green production technology among farmers in Liaoning Province, China

  • Liu, Y. & Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resourc. Conserv. Recycl. 147, 201–213 (2019).

    Article 

    Google Scholar 

  • Ma, J. & Huang, K. Examining the factors influencing agricultural surface source pollution in the Yangtze River economic zone from the perspectives of government, enterprise, and agriculture. Sustainability 15, 14753 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kassie, M., Jaleta, M., Shiferaw, B. A., Mmbando, F. E. & Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 80, 525–540 (2013).

    Article 

    Google Scholar 

  • Liu, Y. et al. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Product. 243, 118483 (2020).

    Article 

    Google Scholar 

  • Li, F. et al. Driving mechanism for farmers to adopt improved agricultural systems in China: The case of rice-green manure crops rotation system. Agric. Syst. 192, 103202 (2021).

    Article 

    Google Scholar 

  • Shah, K. K. et al. Diversified crop rotation: An Approach for sustainable agriculture production. Adv. Agric. 2021, 1–9 (2021).

    CAS 

    Google Scholar 

  • Durán-Lara, E. F., Valderrama, A. & Marican, A. Natural organic compounds for Application in organic farming. Agriculture 10(2), 41 (2020).

    Article 

    Google Scholar 

  • Zhang, J. & Liu, Z. An empirical analysis of the impact of brand story themes on brand attitude in the context of B2C E-commerce platforms for organic agricultural products. Sustainability 15, 16679 (2023).

    Article 

    Google Scholar 

  • Ruiz Corrêa, S. T. et al. straw removal effects on soil water dynamics, soil temperature, and sugarcane yield in South-Central Brazil. BioEnergy Res. 1, 1–15 (2019).

    Google Scholar 

  • Yang, C.-Q. et al. Barley straw combined with urea and controlled-release nitrogen fertilizer improves lint yield and nitrogen utilization of field-seeded cotton. Agronomy 12(5), 1208 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, M., Wang, J., Zhao, P., Chen, K. & Wu, L. Factors affecting the willingness of agricultural green production from the perspective of farmers’ perceptions. Sci. Total Environ. 738, 140289. (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, H., Ma, J., Yao, Z. & Hu, F. How does social embeddedness affect farmers’ adoption behavior of low-carbon agricultural technology? Evidence from Jiangsu province, China. Front. Environ. Sci. 10, 909803 (2022).

    Article 

    Google Scholar 

  • Zhang, Y. & Li, Q. The influence of new media technology on educational communication in China. in DEStech Transactions on Computer Science and Engineering (2017).

  • McKay, T. R., Steede, G. M. & Swenson, R. Expanding the agricultural educator’s toolkit: Identifying challenges in digital media production technology. J. Agric. Educ. 63(4), 59–77 (2022).

    Article 

    Google Scholar 

  • Wang, L. Research on the operation and development mode of family farm in the new media era. Educ. Reform Dev. 2, 2 (2020).

    Article 

    Google Scholar 

  • Shen, J. et al. Agriculture green development: A model for China and the world. Front. Agric. Sci. Eng. 7, 5–13 (2020).

    Article 

    Google Scholar 

  • Zhang, F., Wang, F., Hao, R. & Wu, L. Agricultural science and technology innovation, spatial spillover and agricultural green development: Taking 30 provinces in China as the research object. Appl. Sci. 12, 845 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sharma, M., Sridhar, K., Gupta, V. K. & Dikkala, P. K. Greener technologies in agri-food wastes valorization for plant pigments: Step towards circular economy. Curr. Res. Green Sustain. Chem. 5, 100340 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mishra, S. Emerging technologies: Principles and applications in precision agriculture. in Data Science in Agriculture and Natural Resource Management, 31–53 (2021).

  • Ahmad, F., Khaliq, A., Qiu, B., Sultan, M. & Ma, J. Advancements of spraying technology in agriculture. Technol. Agric. 33, 1–10 (2021).

    Google Scholar 

  • Zhang, X. & Chen, H. Green agricultural development based on information communication technology and the panel space measurement model. Sustainability 13, 1147 (2021).

    Article 

    Google Scholar 

  • Roiss, O. & Medvedeva, L. Innovation in agriculture-An actor in the development of a green economy. in AIP Conference Proceedings, 2650 (2022).

  • Xie, D. & Gao, W. Low-carbon transformation of China’s smallholder agriculture: Exploring the role of farmland size expansion and green technology adoption. Environ. Sci. Pollut. Res. Int. 30, 105522–105537. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tian, L., Zheng, S. & Chen, R. Study on the factors influencing the adoption of green prevention and control technology and income effect: An empirical analysis based on survey data of 792 vegetable farmers. Chin. J. Ecol. Agric. 30, 1687–1697 (2022).

    Google Scholar 

  • Ren, J., Lei, H. & Ren, H. Livelihood capital, ecological cognition, and farmers’ green production behavior. Sustainability 14, 16671 (2022).

    Article 

    Google Scholar 

  • Kassem, H. S., Shabana, R. M., Ghoneim, Y. A. & Alotaibi, B. M. Farmers’ perception of the quality of mobile-based extension services in Egypt: A comparison between public and private provision. Inf. Dev. 36, 161–180. (2020).

    Article 

    Google Scholar 

  • Guo, H. et al. Driving mechanism of farmers’ utilization behaviors of straw resources: An empirical study in Jilin Province, the main grain producing region in the northeast part of China. Sustainability 13(5), 2506 (2021).

    Article 

    Google Scholar 

  • Elahi, E., Khalid, Z. & Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 309, 118459 (2022).

    Article 

    Google Scholar 

  • Mao, H., Zhou, L., Ying, R. & Pan, D. Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China. Land Use Policy 109, 105627 (2021).

    Article 

    Google Scholar 

  • McCarthy, B., Liu, H. & Chen, T. Innovations in the agro-food system: Adoption of certified organic food and green food by Chinese consumers. Br. Food J. 118, 1334–1349 (2016).

    Article 

    Google Scholar 

  • Liu, X. et al. Identifying worldwide interests in organic foods by google search engine data. IEEE Access 7, 147771–147781. (2019).

    Article 

    Google Scholar 

  • Gao, Y., Zhao, D., Yu, L. & Yang, H. Influence of a new agricultural technology extension mode on farmers’ technology adoption behavior in China. J. Rural Stud. 76, 173–183. (2020).

    Article 

    Google Scholar 

  • Huang, X., Yang, F. & Fahad, S. The impact of digital technology use on farmers’ low-carbon production behavior under the background of carbon emission peak and carbon neutrality goals. Front. Environ. Sci. (2022).

    Article 

    Google Scholar 

  • Iqbal, M. A. et al. Drivers of farm households’ perceived risk sources and factors affecting uptake of mitigation strategies in Punjab Pakistan: Implications for Sustainable agriculture. Sustainability 12(23), 9895 (2020).

    Article 

    Google Scholar 

  • Lane, D. et al. Climate change and agriculture in New York and Pennsylvania: Risk perceptions, vulnerability and adaptation among farmers. Renew. Agric. Food Syst. 33, 197–205 (2018).

    Article 

    Google Scholar 

  • Wang, Y.-J., Wang, N. & Huang, G. Q. How do rural households accept straw returning in Northeast China?. Resourc. Conserv. Recycl. 182, 106287. (2022).

    Article 

    Google Scholar 

  • Dai, Q. & Cheng, K. What drives the adoption of agricultural green production technologies? An extension of TAM in agriculture. Sustainability 14, 14457. (2022).

    Article 

    Google Scholar 

  • Ren, Z. & Zhong, K. Driving mechanism of subjective cognition on farmers’ adoption behavior of straw returning technology: Evidence from rice and wheat producing provinces in China. Front. Psychol. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C., Shi, Y., Khan, S. U. & Zhao, M. Research on the impact of agricultural green production on farmers’ technical efficiency: Evidence from China. Environ. Sci. Pollut. Res. Int. 28, 38535–38551. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Sui, Y. & Gao, Q. Farmers’ endowments, technology perception and green production technology adoption behavior. Sustainability 15, 7385. (2023).

    Article 

    Google Scholar 

  • Yazdanpanah, M., Hayati, D., Hochrainer-Stigler, S. & Zamani, G. Understanding farmers’ intention and behavior regarding water conservation in the Middle-East and North Africa: A case study in Iran. J. Environ. Manag. 135, 63–72 (2014).

    Article 

    Google Scholar 

  • Caffaro, F., Micheletti Cremasco, M., Roccato, M. & Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural Stud. 76, 264–271 (2020).

    Article 

    Google Scholar 

  • Jiang, W., Yan, T. & Chen, B. Impact of media channels and social interactions on the adoption of straw return by Chinese farmers. Sci. Total Environ. 756, 144078. (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Q., Pan, Y. & Xia, X. Internet can do help in the reduction of pesticide use by farmers: Evidence from rural China. Environ. Sci. Pollut. Res. 28, 2063–2073. (2020).

    Article 

    Google Scholar 

  • Wang, Z., Ali, S., Akbar, A. & Rasool, F. Determining the influencing factors of biogas technology adoption intention in Pakistan: The moderating role of social media. Int. J. Environ. Res. Public Health 17, 2311. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bilali, H. E. & Allahyari, M. S. Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Inf. Process. Agric. 5(4), 456–464 (2018).

    Google Scholar 

  • Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340. (1989).

    Article 

    Google Scholar 

  • Vasudeva, S. Age in the acceptance of mobile social media: A comparison of generation Y and baby boomers using UTAUT2 model. Int. J. E-Adopt. (IJEA) 15, 1–24. (2023).

    Article 

    Google Scholar 

  • Yao, Y. & Murphy, L. Remote electronic voting systems: An exploration of voters’ perceptions and intention to use. Eur. J. Inf. Syst. 16, 106–120. (2007).

    Article 

    Google Scholar 

  • Chen, L.-D., Gillenson, M. L. & Sherrell, D. L. Enticing online consumers: An extended technology acceptance perspective. Inf. Manag. 39, 705–719. (2002).

    Article 

    Google Scholar 

  • Anderson, C. S., Al-Gahtani, S. & Hubona, G. The value of TAM antecedents in global IS development and research. J. Org. End User Comput. (JOEUC) 23, 18–37. (2011).

    Article 

    Google Scholar 

  • Fichman, R. G. Information technology diffusion: A review of empirical research. ICIS. 195, 206 (1992).

    Google Scholar 

  • Ajzen, I. The theory of planned behaviour: Reactions and reflections. Psychol. Health. 26(9), 1113–1127 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Kamal, S. A., Shafiq, M. I., Shafiq, M. I. & Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. 60, 101212 (2020).

    Article 

    Google Scholar 

  • Alfadda, H. A. & Mahdi, H. S. Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM). J. Psycholing. Res. 50, 883–900 (2021).

    Article 

    Google Scholar 

  • Gefen, D., Karahanna, E. & Straub, D. W. Trust and TAM in online shopping: An integrated model. MIS Q. 27, 51–90 (2003).

    Article 

    Google Scholar 

  • Aubert, B., Schroeder, A. & Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54, 510–520 (2012).

    Article 

    Google Scholar 

  • Savari, M., Zhoolideh, M. & Khosravipour, B. Explaining pro-environmental behavior of farmers: A case of rural Iran. Curr. Psychol. 42, 7752–7770 (2021).

    Article 

    Google Scholar 

  • Dong, H., Wang, H. & Han, J. Understanding ecological agricultural technology adoption in China using an integrated technology acceptance model: Theory of planned behavior model. Front. Environ. Sci. 10, 927668 (2022).

    Article 

    Google Scholar 

  • Xu, J. et al. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water Manag. 228, 105904 (2020).

    Article 

    Google Scholar 

  • Giacometti, C. et al. Rotation and fertilization effects on soil quality and yields in a long term field experiment. Agronomy 11(4), 636 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pavlou, P. A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Commerce 7, 101–134 (2003).

    Article 

    Google Scholar 

  • Asravor, R. K. Farmers’ risk preference and the adoption of risk management strategies in Northern Ghana. J. Environ. Plan. Manag. 62, 881–900 (2018).

    Article 

    Google Scholar 

  • Shee, A., Azzarri, C. & Haile, B. Farmers’ willingness to pay for improved agricultural technologies: Evidence from a field experiment in Tanzania. Sustainability 12, 216 (2020).

    Article 

    Google Scholar 

  • Zhou, W., Qing, C., Deng, X., Song, J. & Xu, D. How does Internet use affect farmers’ low-carbon agricultural technologies in southern China?. Environ. Sci. Pollut. Res. 30, 16476–16487. (2022).

    Article 

    Google Scholar 

  • Smith, A., Goe, W. R., Kenney, M. & Paul, C. J. M. Computer and internet use by great plains farmers. J. Agric. Resourc. Econ. 1, 481–500 (2004).

    Google Scholar 

  • Cole, S. & Fernando, A. N. The value of advice: Evidence from mobile phone-based agricultural extension. in Harvard Business School Working Paper. 13, 047 (2012).

  • Maredia, M. K. et al. Can mobile phone-based animated videos induce learning and technology adoption among low-literate farmers? A field experiment in Burkina Faso. Inf. Technol. Dev. 24, 429–460. (2017).

    Article 

    Google Scholar 

  • Leng, X. & Tong, G. J. The digital economy empowers the sustainable development of China’s agriculture-related industries. Sustainability 14(17), 10967 (2022).

    Article 

    Google Scholar 

  • Chaffey, D., Ellis-Chadwick, F., Mayer, R. & Johnston, K. Internet Marketing: Strategy, Implementation and Practice (Pearson Education, 2009).

    Google Scholar 

  • Juswadi, J., Sumarna, P. & Mulyati, N. S. in International Conference on Agriculture, Social Sciences, Education, Technology and Health (ICASSETH 2019). 105–110 (Atlantis Press).

  • Zeng, B., Liu, X., Zhang, W., Wu, L. & Xu, D. Digital transformation of agricultural products purchasing: From the perspective of short videos live-streaming. Sustainability 15, 14948 (2023).

    Article 

    Google Scholar 

  • Lu, H., Hu, L., Zheng, W., Yao, S. & Qian, L. Impact of household land endowment and environmental cognition on the willingness to implement straw incorporation in China. J. Clean. Prod. 262, 121479 (2020).

    Article 

    Google Scholar 

  • Cheruku, D. J. K. & Katekar, V. Harnessing digital agriculture technologies for sustainable agriculture in India: Opportunities and challenges. in Administrative Development ‘A Journal of HIPA, Shimla’ (2021).

  • Xiang, W. & Gao, J. Do not be anticlimactic: Farmers’ behavior in the sustainable application of green agricultural technology: A perceived value and government support perspective. Agriculture 13, 247. (2023).

    Article 

    Google Scholar 

  • Xinyu, T., Yanqin, C. & Jiayu, Y. The impact of digital technology on farmers’ adoption of low-carbon agricultural technology behavior-based on the theory of planned behavior [Chinese]. Rural Sci. Technol. 14, 4–9 (2023).

    Google Scholar 

  • Bagheri, A., Bondori, A., Allahyari, M. S. & Damalas, C. A. Modeling farmers’ intention to use pesticides: An expanded version of the theory of planned behavior. J. Environ. Manag. 248, 109291 (2019).

    Article 

    Google Scholar 

  • Fornell, C. & Larcker, D. F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18, 39–50 (1981).

    Article 

    Google Scholar 

  • Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 8, 23–74 (2003).

    Google Scholar 

  • Rahayuningsih, S. D. & Tain, A. Consumers willingness to pay and factors affecting organic vegetable purchasing decisions. Agriecobis J. Agric. Socioecon. Bus. 4(1), 01–12 (2021).

    Google Scholar 

  • Guntukogula Pattabhi, S., Prashanth, P., Sreenivasulu, M. & Madavilata, A. Effectiveness of social media agricultural information on farmer’s knowledge. Environ. Conserv. J. 24, 123–129 (2023).

    Article 

    Google Scholar 

  • Bello-Bravo, J. et al. Scientific animations without borders SM: an international collaborative approach for building scientific educational materials for use on cell phones and the internet in developing nations. Int. J. Sci. Soc. 2, 4 (2011).

    Article 

    Google Scholar 

  • link

    By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *