• Wed. Feb 19th, 2025

Effect of digital multimedia on the adoption of agricultural green production technology among farmers in Liaoning Province, China

Effect of digital multimedia on the adoption of agricultural green production technology among farmers in Liaoning Province, China
  • Liu, Y. & Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resourc. Conserv. Recycl. 147, 201–213 (2019).

    Article 

    Google Scholar 

  • Ma, J. & Huang, K. Examining the factors influencing agricultural surface source pollution in the Yangtze River economic zone from the perspectives of government, enterprise, and agriculture. Sustainability 15, 14753 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kassie, M., Jaleta, M., Shiferaw, B. A., Mmbando, F. E. & Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 80, 525–540 (2013).

    Article 

    Google Scholar 

  • Liu, Y. et al. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Product. 243, 118483 (2020).

    Article 

    Google Scholar 

  • Li, F. et al. Driving mechanism for farmers to adopt improved agricultural systems in China: The case of rice-green manure crops rotation system. Agric. Syst. 192, 103202 (2021).

    Article 

    Google Scholar 

  • Shah, K. K. et al. Diversified crop rotation: An Approach for sustainable agriculture production. Adv. Agric. 2021, 1–9 (2021).

    CAS 

    Google Scholar 

  • Durán-Lara, E. F., Valderrama, A. & Marican, A. Natural organic compounds for Application in organic farming. Agriculture 10(2), 41 (2020).

    Article 

    Google Scholar 

  • Zhang, J. & Liu, Z. An empirical analysis of the impact of brand story themes on brand attitude in the context of B2C E-commerce platforms for organic agricultural products. Sustainability 15, 16679 (2023).

    Article 

    Google Scholar 

  • Ruiz Corrêa, S. T. et al. straw removal effects on soil water dynamics, soil temperature, and sugarcane yield in South-Central Brazil. BioEnergy Res. 1, 1–15 (2019).

    Google Scholar 

  • Yang, C.-Q. et al. Barley straw combined with urea and controlled-release nitrogen fertilizer improves lint yield and nitrogen utilization of field-seeded cotton. Agronomy 12(5), 1208 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, M., Wang, J., Zhao, P., Chen, K. & Wu, L. Factors affecting the willingness of agricultural green production from the perspective of farmers’ perceptions. Sci. Total Environ. 738, 140289. (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, H., Ma, J., Yao, Z. & Hu, F. How does social embeddedness affect farmers’ adoption behavior of low-carbon agricultural technology? Evidence from Jiangsu province, China. Front. Environ. Sci. 10, 909803 (2022).

    Article 

    Google Scholar 

  • Zhang, Y. & Li, Q. The influence of new media technology on educational communication in China. in DEStech Transactions on Computer Science and Engineering (2017).

  • McKay, T. R., Steede, G. M. & Swenson, R. Expanding the agricultural educator’s toolkit: Identifying challenges in digital media production technology. J. Agric. Educ. 63(4), 59–77 (2022).

    Article 

    Google Scholar 

  • Wang, L. Research on the operation and development mode of family farm in the new media era. Educ. Reform Dev. 2, 2 (2020).

    Article 

    Google Scholar 

  • Shen, J. et al. Agriculture green development: A model for China and the world. Front. Agric. Sci. Eng. 7, 5–13 (2020).

    Article 

    Google Scholar 

  • Zhang, F., Wang, F., Hao, R. & Wu, L. Agricultural science and technology innovation, spatial spillover and agricultural green development: Taking 30 provinces in China as the research object. Appl. Sci. 12, 845 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sharma, M., Sridhar, K., Gupta, V. K. & Dikkala, P. K. Greener technologies in agri-food wastes valorization for plant pigments: Step towards circular economy. Curr. Res. Green Sustain. Chem. 5, 100340 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mishra, S. Emerging technologies: Principles and applications in precision agriculture. in Data Science in Agriculture and Natural Resource Management, 31–53 (2021).

  • Ahmad, F., Khaliq, A., Qiu, B., Sultan, M. & Ma, J. Advancements of spraying technology in agriculture. Technol. Agric. 33, 1–10 (2021).

    Google Scholar 

  • Zhang, X. & Chen, H. Green agricultural development based on information communication technology and the panel space measurement model. Sustainability 13, 1147 (2021).

    Article 

    Google Scholar 

  • Roiss, O. & Medvedeva, L. Innovation in agriculture-An actor in the development of a green economy. in AIP Conference Proceedings, 2650 (2022).

  • Xie, D. & Gao, W. Low-carbon transformation of China’s smallholder agriculture: Exploring the role of farmland size expansion and green technology adoption. Environ. Sci. Pollut. Res. Int. 30, 105522–105537. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tian, L., Zheng, S. & Chen, R. Study on the factors influencing the adoption of green prevention and control technology and income effect: An empirical analysis based on survey data of 792 vegetable farmers. Chin. J. Ecol. Agric. 30, 1687–1697 (2022).

    Google Scholar 

  • Ren, J., Lei, H. & Ren, H. Livelihood capital, ecological cognition, and farmers’ green production behavior. Sustainability 14, 16671 (2022).

    Article 

    Google Scholar 

  • Kassem, H. S., Shabana, R. M., Ghoneim, Y. A. & Alotaibi, B. M. Farmers’ perception of the quality of mobile-based extension services in Egypt: A comparison between public and private provision. Inf. Dev. 36, 161–180. (2020).

    Article 

    Google Scholar 

  • Guo, H. et al. Driving mechanism of farmers’ utilization behaviors of straw resources: An empirical study in Jilin Province, the main grain producing region in the northeast part of China. Sustainability 13(5), 2506 (2021).

    Article 

    Google Scholar 

  • Elahi, E., Khalid, Z. & Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 309, 118459 (2022).

    Article 

    Google Scholar 

  • Mao, H., Zhou, L., Ying, R. & Pan, D. Time Preferences and green agricultural technology adoption: Field evidence from rice farmers in China. Land Use Policy 109, 105627 (2021).

    Article 

    Google Scholar 

  • McCarthy, B., Liu, H. & Chen, T. Innovations in the agro-food system: Adoption of certified organic food and green food by Chinese consumers. Br. Food J. 118, 1334–1349 (2016).

    Article 

    Google Scholar 

  • Liu, X. et al. Identifying worldwide interests in organic foods by google search engine data. IEEE Access 7, 147771–147781. (2019).

    Article 

    Google Scholar 

  • Gao, Y., Zhao, D., Yu, L. & Yang, H. Influence of a new agricultural technology extension mode on farmers’ technology adoption behavior in China. J. Rural Stud. 76, 173–183. (2020).

    Article 

    Google Scholar 

  • Huang, X., Yang, F. & Fahad, S. The impact of digital technology use on farmers’ low-carbon production behavior under the background of carbon emission peak and carbon neutrality goals. Front. Environ. Sci. (2022).

    Article 

    Google Scholar 

  • Iqbal, M. A. et al. Drivers of farm households’ perceived risk sources and factors affecting uptake of mitigation strategies in Punjab Pakistan: Implications for Sustainable agriculture. Sustainability 12(23), 9895 (2020).

    Article 

    Google Scholar 

  • Lane, D. et al. Climate change and agriculture in New York and Pennsylvania: Risk perceptions, vulnerability and adaptation among farmers. Renew. Agric. Food Syst. 33, 197–205 (2018).

    Article 

    Google Scholar 

  • Wang, Y.-J., Wang, N. & Huang, G. Q. How do rural households accept straw returning in Northeast China?. Resourc. Conserv. Recycl. 182, 106287. (2022).

    Article 

    Google Scholar 

  • Dai, Q. & Cheng, K. What drives the adoption of agricultural green production technologies? An extension of TAM in agriculture. Sustainability 14, 14457. (2022).

    Article 

    Google Scholar 

  • Ren, Z. & Zhong, K. Driving mechanism of subjective cognition on farmers’ adoption behavior of straw returning technology: Evidence from rice and wheat producing provinces in China. Front. Psychol. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C., Shi, Y., Khan, S. U. & Zhao, M. Research on the impact of agricultural green production on farmers’ technical efficiency: Evidence from China. Environ. Sci. Pollut. Res. Int. 28, 38535–38551. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Sui, Y. & Gao, Q. Farmers’ endowments, technology perception and green production technology adoption behavior. Sustainability 15, 7385. (2023).

    Article 

    Google Scholar 

  • Yazdanpanah, M., Hayati, D., Hochrainer-Stigler, S. & Zamani, G. Understanding farmers’ intention and behavior regarding water conservation in the Middle-East and North Africa: A case study in Iran. J. Environ. Manag. 135, 63–72 (2014).

    Article 

    Google Scholar 

  • Caffaro, F., Micheletti Cremasco, M., Roccato, M. & Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural Stud. 76, 264–271 (2020).

    Article 

    Google Scholar 

  • Jiang, W., Yan, T. & Chen, B. Impact of media channels and social interactions on the adoption of straw return by Chinese farmers. Sci. Total Environ. 756, 144078. (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Q., Pan, Y. & Xia, X. Internet can do help in the reduction of pesticide use by farmers: Evidence from rural China. Environ. Sci. Pollut. Res. 28, 2063–2073. (2020).

    Article 

    Google Scholar 

  • Wang, Z., Ali, S., Akbar, A. & Rasool, F. Determining the influencing factors of biogas technology adoption intention in Pakistan: The moderating role of social media. Int. J. Environ. Res. Public Health 17, 2311. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bilali, H. E. & Allahyari, M. S. Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Inf. Process. Agric. 5(4), 456–464 (2018).

    Google Scholar 

  • Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340. (1989).

    Article 

    Google Scholar 

  • Vasudeva, S. Age in the acceptance of mobile social media: A comparison of generation Y and baby boomers using UTAUT2 model. Int. J. E-Adopt. (IJEA) 15, 1–24. (2023).

    Article 

    Google Scholar 

  • Yao, Y. & Murphy, L. Remote electronic voting systems: An exploration of voters’ perceptions and intention to use. Eur. J. Inf. Syst. 16, 106–120. (2007).

    Article 

    Google Scholar 

  • Chen, L.-D., Gillenson, M. L. & Sherrell, D. L. Enticing online consumers: An extended technology acceptance perspective. Inf. Manag. 39, 705–719. (2002).

    Article 

    Google Scholar 

  • Anderson, C. S., Al-Gahtani, S. & Hubona, G. The value of TAM antecedents in global IS development and research. J. Org. End User Comput. (JOEUC) 23, 18–37. (2011).

    Article 

    Google Scholar 

  • Fichman, R. G. Information technology diffusion: A review of empirical research. ICIS. 195, 206 (1992).

    Google Scholar 

  • Ajzen, I. The theory of planned behaviour: Reactions and reflections. Psychol. Health. 26(9), 1113–1127 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Kamal, S. A., Shafiq, M. I., Shafiq, M. I. & Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. 60, 101212 (2020).

    Article 

    Google Scholar 

  • Alfadda, H. A. & Mahdi, H. S. Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM). J. Psycholing. Res. 50, 883–900 (2021).

    Article 

    Google Scholar 

  • Gefen, D., Karahanna, E. & Straub, D. W. Trust and TAM in online shopping: An integrated model. MIS Q. 27, 51–90 (2003).

    Article 

    Google Scholar 

  • Aubert, B., Schroeder, A. & Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54, 510–520 (2012).

    Article 

    Google Scholar 

  • Savari, M., Zhoolideh, M. & Khosravipour, B. Explaining pro-environmental behavior of farmers: A case of rural Iran. Curr. Psychol. 42, 7752–7770 (2021).

    Article 

    Google Scholar 

  • Dong, H., Wang, H. & Han, J. Understanding ecological agricultural technology adoption in China using an integrated technology acceptance model: Theory of planned behavior model. Front. Environ. Sci. 10, 927668 (2022).

    Article 

    Google Scholar 

  • Xu, J. et al. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water Manag. 228, 105904 (2020).

    Article 

    Google Scholar 

  • Giacometti, C. et al. Rotation and fertilization effects on soil quality and yields in a long term field experiment. Agronomy 11(4), 636 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pavlou, P. A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Commerce 7, 101–134 (2003).

    Article 

    Google Scholar 

  • Asravor, R. K. Farmers’ risk preference and the adoption of risk management strategies in Northern Ghana. J. Environ. Plan. Manag. 62, 881–900 (2018).

    Article 

    Google Scholar 

  • Shee, A., Azzarri, C. & Haile, B. Farmers’ willingness to pay for improved agricultural technologies: Evidence from a field experiment in Tanzania. Sustainability 12, 216 (2020).

    Article 

    Google Scholar 

  • Zhou, W., Qing, C., Deng, X., Song, J. & Xu, D. How does Internet use affect farmers’ low-carbon agricultural technologies in southern China?. Environ. Sci. Pollut. Res. 30, 16476–16487. (2022).

    Article 

    Google Scholar 

  • Smith, A., Goe, W. R., Kenney, M. & Paul, C. J. M. Computer and internet use by great plains farmers. J. Agric. Resourc. Econ. 1, 481–500 (2004).

    Google Scholar 

  • Cole, S. & Fernando, A. N. The value of advice: Evidence from mobile phone-based agricultural extension. in Harvard Business School Working Paper. 13, 047 (2012).

  • Maredia, M. K. et al. Can mobile phone-based animated videos induce learning and technology adoption among low-literate farmers? A field experiment in Burkina Faso. Inf. Technol. Dev. 24, 429–460. (2017).

    Article 

    Google Scholar 

  • Leng, X. & Tong, G. J. The digital economy empowers the sustainable development of China’s agriculture-related industries. Sustainability 14(17), 10967 (2022).

    Article 

    Google Scholar 

  • Chaffey, D., Ellis-Chadwick, F., Mayer, R. & Johnston, K. Internet Marketing: Strategy, Implementation and Practice (Pearson Education, 2009).

    Google Scholar 

  • Juswadi, J., Sumarna, P. & Mulyati, N. S. in International Conference on Agriculture, Social Sciences, Education, Technology and Health (ICASSETH 2019). 105–110 (Atlantis Press).

  • Zeng, B., Liu, X., Zhang, W., Wu, L. & Xu, D. Digital transformation of agricultural products purchasing: From the perspective of short videos live-streaming. Sustainability 15, 14948 (2023).

    Article 

    Google Scholar 

  • Lu, H., Hu, L., Zheng, W., Yao, S. & Qian, L. Impact of household land endowment and environmental cognition on the willingness to implement straw incorporation in China. J. Clean. Prod. 262, 121479 (2020).

    Article 

    Google Scholar 

  • Cheruku, D. J. K. & Katekar, V. Harnessing digital agriculture technologies for sustainable agriculture in India: Opportunities and challenges. in Administrative Development ‘A Journal of HIPA, Shimla’ (2021).

  • Xiang, W. & Gao, J. Do not be anticlimactic: Farmers’ behavior in the sustainable application of green agricultural technology: A perceived value and government support perspective. Agriculture 13, 247. (2023).

    Article 

    Google Scholar 

  • Xinyu, T., Yanqin, C. & Jiayu, Y. The impact of digital technology on farmers’ adoption of low-carbon agricultural technology behavior-based on the theory of planned behavior [Chinese]. Rural Sci. Technol. 14, 4–9 (2023).

    Google Scholar 

  • Bagheri, A., Bondori, A., Allahyari, M. S. & Damalas, C. A. Modeling farmers’ intention to use pesticides: An expanded version of the theory of planned behavior. J. Environ. Manag. 248, 109291 (2019).

    Article 

    Google Scholar 

  • Fornell, C. & Larcker, D. F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18, 39–50 (1981).

    Article 

    Google Scholar 

  • Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 8, 23–74 (2003).

    Google Scholar 

  • Rahayuningsih, S. D. & Tain, A. Consumers willingness to pay and factors affecting organic vegetable purchasing decisions. Agriecobis J. Agric. Socioecon. Bus. 4(1), 01–12 (2021).

    Google Scholar 

  • Guntukogula Pattabhi, S., Prashanth, P., Sreenivasulu, M. & Madavilata, A. Effectiveness of social media agricultural information on farmer’s knowledge. Environ. Conserv. J. 24, 123–129 (2023).

    Article 

    Google Scholar 

  • Bello-Bravo, J. et al. Scientific animations without borders SM: an international collaborative approach for building scientific educational materials for use on cell phones and the internet in developing nations. Int. J. Sci. Soc. 2, 4 (2011).

    Article 

    Google Scholar 

  • link

    By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *