Carrara, S. & Longden, T. Freight futures: The potential impact of road freight on climate policy. Transp. Res. Part D 55, 359–372 (2017).
Google Scholar
Sharmina, M. et al. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C. Clim. Policy 21, 455–474 (2021).
Google Scholar
Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).
Google Scholar
Zhang, H., Chen, W. & Huang, W. TIMES modelling of transport sector in China and USA: comparisons from a decarbonization perspective. Appl. Energy 162, 1505–1514 (2016).
Google Scholar
van der Zwaan, B., Keppo, I. & Johnsson, F. How to decarbonize the transport sector? Energy Policy 61, 562–573 (2013).
Google Scholar
Muratori, M. et al. Role of the freight sector in future climate change mitigation scenarios. Environ. Sci. Technol. 51, 3526–3533 (2017).
Google Scholar
Azar, C., Lindgren, K. & Andersson, B. A. Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31, 961–976 (2003).
Google Scholar
Pietzcker, R. C. et al. Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models. Energy 64, 95–108 (2014).
Google Scholar
International Energy Agency. Global Electric Vehicle Outlook 2022. (2022).
Noussan, M., Hafner, M. & Tagliapietra, S. Decarbonization Solutions. In The Future of Transport Between Digitalization and Decarbonization 29–50 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-37966-7_2.
Rottoli, M., Dirnaichner, A., Pietzcker, R., Schreyer, F. & Luderer, G. Alternative electrification pathways for light-duty vehicles in the European transport sector. Transp. Res. Part D 99, 103005 (2021).
Google Scholar
Gray, N., McDonagh, S., O’Shea, R., Smyth, B. & Murphy, J. D. Decarbonising ships, planes and trucks: an analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 1, 100008 (2021).
Google Scholar
International Energy Agency. Net Zero by 2050 – A Roadmap for the Global Energy Sector. (2021).
McCollum, D. & Yang, C. Achieving deep reductions in US transport greenhouse gas emissions: scenario analysis and policy implications. Energy Policy 37, 5580–5596 (2009).
Google Scholar
Zhang, R., Fujimori, S. & Hanaoka, T. The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals. Environ. Res. Lett. 13, 054008 (2018).
Google Scholar
United States Federal Aviation Administration. 2021 United States Aviation Climate Action Plan. (2021).
Halim, R., Kirstein, L., Merk, O. & Martinez, L. Decarbonization pathways for international maritime transport: a model-based policy impact assessment. Sustainability 10, 2243 (2018).
Google Scholar
International Civil Aviation Organization. Report on the Feasibility of a Long-Term Aspirational Goal (LTAG) for International Civil Aviation CO2 Emission Reductions. (2022).
International Renewable Energy Agency. A pathway to decarbonise the shipping sector by 2050. (2021).
Traut, M. et al. CO 2 abatement goals for international shipping. Clim. Policy 18, 1066–1075 (2018).
Google Scholar
Bergero, C. et al. Pathways to net-zero emissions from aviation. Nat. Sustain. 1–11, (2023).
Dray, L. et al. Cost and emissions pathways towards net-zero climate impacts in aviation. Nat. Clim. Chang. 12, 956–962 (2022).
Google Scholar
Pan, X., Wang, H., Wang, L. & Chen, W. Decarbonization of China’s transportation sector: in light of national mitigation toward the Paris Agreement goals. Energy 155, 853–864 (2018).
Google Scholar
Zhang, H. & Chen, W. The role of biofuels in China’s transport sector in carbon mitigation scenarios. Energy Proc. 75, 2700–2705 (2015).
Google Scholar
Müller-Casseres, E. et al. Are there synergies in the decarbonization of aviation and shipping? An integrated perspective for the case of Brazil. iScience 25, 105248 (2022).
Google Scholar
Tamba, M. et al. Economy-wide impacts of road transport electrification in the EU. Technol. Forecast. Soc. Change 182, 121803 (2022).
Google Scholar
Siskos, P., Zazias, G., Petropoulos, A., Evangelopoulou, S. & Capros, P. Implications of delaying transport decarbonisation in the EU: a systems analysis using the PRIMES model. Energy Policy 121, 48–60 (2018).
Google Scholar
Yeh, S., Farrell, A., Plevin, R., Sanstad, A. & Weyant, J. Optimizing U.S. mitigation strategies for the light-duty transportation sector: what we learn from a bottom-up model. Environ. Sci. Technol. 42, 8202–8210 (2008).
Google Scholar
McCollum, D., Krey, V., Kolp, P., Nagai, Y. & Riahi, K. Transport electrification: a key element for energy system transformation and climate stabilization. Clim. Change 123, 651–664 (2014).
Google Scholar
Kyle, P. & Kim, S. H. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands. Energy Policy 39, 3012–3024 (2011).
Google Scholar
de Blas, I., Mediavilla, M., Capellán-Pérez, I. & Duce, C. The limits of transport decarbonization under the current growth paradigm. Energy Strat. Rev. 32, 100543 (2020).
Google Scholar
Yeh, S. et al. Detailed assessment of global transport-energy models’ structures and projections. Transp. Res. Part D 55, 294–309 (2017).
Google Scholar
Edelenbosch, O. Y. et al. Decomposing passenger transport futures: comparing results of global integrated assessment models. Transp. Res. Part D 55, 281–293 (2017).
Google Scholar
Mittal, S., Dai, H., Fujimori, S., Hanaoka, T. & Zhang, R. Key factors influencing the global passenger transport dynamics using the AIM/transport model. Transp. Res. Part D 55, 373–388 (2017).
Google Scholar
Girod, B. et al. Climate impact of transportation a model comparison. Clim. Change 118, 595–608 (2013).
Google Scholar
Wise, M., Muratori, M. & Kyle, P. Biojet fuels and emissions mitigation in aviation: an integrated assessment modeling analysis. Transp. Res. Part D 52, 244–253 (2017).
Google Scholar
International Chamber of Shipping. Shipping industry sets out bold plan to global regulator to deliver net zero by 2050. (2021).
International Air Transport Association. Net Zero Resolution. (2022).
Aspen Institute. Aspen Institute Launches coZEV Initiative with Major Corporations to Support Zero-Carbon Shipping. The Aspen Institute (2021).
International Civil Aviation Organization. States adopt net-zero 2050 global aspirational goal for international flight operations. International Civil Aviation Organization Newsroom (2022).
International Maritime Organization. Adoption of the Initial IMO Strategy on Reduction of GHG Emissions from Ships and Existing IMO Activity Related to Reducing GHG Emissions in the Shipping Sector (International Maritime Organization, 2018).
International Civil Aviation Organization. Resolution A40-18: Consolidated statement of continuing ICAO policies and practices related to environmental protection – Climate change (International Civil Aviation Organization, 2019).
Gambhir, A. et al. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat. Clim. Chang. 12, 88–96 (2022).
Google Scholar
Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Chang. 13, 341–350 (2023).
Google Scholar
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).
Google Scholar
Riahi, K. et al, Mitigation pathways compatible with long-term goals. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157926.005.
Lappas, A. & Heracleous, E. Production of biofuels via Fischer–Tropsch synthesis. In Handbook of Biofuels Production 549–593 (Elsevier, 2016). https://doi.org/10.1016/B978-0-08-100455-5.00018-7.
Balcombe, P. et al. How to decarbonise international shipping: options for fuels, technologies and policies. Energy Convers. Manag. 182, 72–88 (2019).
Google Scholar
Hertel, T. W. et al. Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60, 223–231 (2010).
Google Scholar
Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).
Google Scholar
Calvin, K. et al. Bioenergy for climate change mitigation: scale and sustainability. GCB Bioenergy 13, 1346–1371 (2021).
Google Scholar
Fargione, J. E., Plevin, R. J. & Hill, J. D. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. Syst. 41, 351–377 (2010).
Google Scholar
IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds MassonDelmotte, V. et al.) 3−32 (Cambridge University Press, 2021), https://doi.org/10.1017/9781009157896.001.
Byers et al. AR6 Scenarios Database. Zenodo, (2022).
International Energy Agency. Global Hydrogen Review 2021. (2021).
IEA. Biofuels. IEA (2023).
Airbus. ZEROe: Towards the world’s first hydrogen-powered commercial aircraft, (2021).
Runge, P. et al. Economic comparison of different electric fuels for energy scenarios in 2035. Appl. Energy 233–234, 1078–1093 (2019).
Google Scholar
Goldmann, A. et al. A Study on Electrofuels in Aviation. Energies 11, 392 (2018).
Google Scholar
Global Maritime Forum. Ammonia as a shipping fuel. (2022).
Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022).
Google Scholar
Gilbert, P. et al. Assessment of full life-cycle air emissions of alternative shipping fuels. J. Clean. Prod. 172, 855–866 (2018).
Google Scholar
Zhang, R. & Fujimori, S. The role of transport electrification in global climate change mitigation scenarios. Environ. Res. Lett. 15, 034019 (2020).
Google Scholar
Zhao, X., Taheripour, F., Malina, R., Staples, M. D. & Tyner, W. E. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Sci. Total Environ. 779, 146238 (2021).
Google Scholar
Uludere Aragon, N. Z. et al. Sustainable land use and viability of biojet fuels. Nat. Sustain., (2022).
Drews, M. & Larsen, M. A. D. & Peña Balderrama, J. G. Projected water usage and land-use-change emissions from biomass production (2015–2050). Energy Strategy Rev. 29, 100487 (2020).
Google Scholar
Vanek, F. M., Angenent, L. T., Banks, J. H., Daziano, R. A. & Turnquist, M. A. Sustainable transportation systems engineering (McGraw-Hill Education, 2014).
McCollum, D. L. et al. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nat. Energy 3, 664–673 (2018).
Google Scholar
Woodcock, J. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374, 1930–1943 (2009).
Google Scholar
Mishra, G. S. et al. Transportation Module of Global Change Assessment Model (GCAM) (GCAM, 2013).
Kyle, P., Fuhrman, J., Wolfram, P., O’Rourke, P. & Kholod, N. Core Model Proposal #359: Hydrogen and transportation technology update (Joint Global Change Research Institute, 2022).
Bond-Lamberty, B. et al. JGCRI/gcam-core: GCAM 6.0. Zenodo, (2022).
Zhou, Y., Luckow, P., Smith, S. J. & Clarke, L. Evaluation of global onshore wind energy potential and generation costs. Environ. Sci. Technol. 46, 7857–7864 (2012).
Google Scholar
Zhang, Y., Smith, S. J., Kyle, G. P. & Stackhouse, P. W. Modeling the potential for thermal concentrating solar power technologies. Energy Policy 38, 7884–7897 (2010).
Google Scholar
Carbon Engineering. AIR TO FUELSTM Technology. Carbon Engineering (2024).
Fuhrman, J. et al. The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environ. Res. Lett. 16, 114012 (2021).
Google Scholar
van der Giesen, C., Kleijn, R. & Kramer, G. J. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environ. Sci. Technol. 48, 7111–7121 (2014).
Google Scholar
Speizer, S. et al. Integrated assessment modeling of a zero-emissions global transportation sector. Zenodo, (2024).
link