• Wed. Feb 19th, 2025

Integrated assessment modeling of a zero-emissions global transportation sector

Integrated assessment modeling of a zero-emissions global transportation sector
  • Carrara, S. & Longden, T. Freight futures: The potential impact of road freight on climate policy. Transp. Res. Part D 55, 359–372 (2017).

    Article 

    Google Scholar 

  • Sharmina, M. et al. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C. Clim. Policy 21, 455–474 (2021).

    Article 

    Google Scholar 

  • Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, H., Chen, W. & Huang, W. TIMES modelling of transport sector in China and USA: comparisons from a decarbonization perspective. Appl. Energy 162, 1505–1514 (2016).

    Article 
    ADS 

    Google Scholar 

  • van der Zwaan, B., Keppo, I. & Johnsson, F. How to decarbonize the transport sector? Energy Policy 61, 562–573 (2013).

    Article 

    Google Scholar 

  • Muratori, M. et al. Role of the freight sector in future climate change mitigation scenarios. Environ. Sci. Technol. 51, 3526–3533 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Azar, C., Lindgren, K. & Andersson, B. A. Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31, 961–976 (2003).

    Article 

    Google Scholar 

  • Pietzcker, R. C. et al. Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models. Energy 64, 95–108 (2014).

    Article 

    Google Scholar 

  • International Energy Agency. Global Electric Vehicle Outlook 2022. (2022).

  • Noussan, M., Hafner, M. & Tagliapietra, S. Decarbonization Solutions. In The Future of Transport Between Digitalization and Decarbonization 29–50 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-37966-7_2.

  • Rottoli, M., Dirnaichner, A., Pietzcker, R., Schreyer, F. & Luderer, G. Alternative electrification pathways for light-duty vehicles in the European transport sector. Transp. Res. Part D 99, 103005 (2021).

    Article 

    Google Scholar 

  • Gray, N., McDonagh, S., O’Shea, R., Smyth, B. & Murphy, J. D. Decarbonising ships, planes and trucks: an analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 1, 100008 (2021).

    Article 
    CAS 

    Google Scholar 

  • International Energy Agency. Net Zero by 2050 – A Roadmap for the Global Energy Sector. (2021).

  • McCollum, D. & Yang, C. Achieving deep reductions in US transport greenhouse gas emissions: scenario analysis and policy implications. Energy Policy 37, 5580–5596 (2009).

    Article 

    Google Scholar 

  • Zhang, R., Fujimori, S. & Hanaoka, T. The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals. Environ. Res. Lett. 13, 054008 (2018).

    Article 
    ADS 

    Google Scholar 

  • United States Federal Aviation Administration. 2021 United States Aviation Climate Action Plan. (2021).

  • Halim, R., Kirstein, L., Merk, O. & Martinez, L. Decarbonization pathways for international maritime transport: a model-based policy impact assessment. Sustainability 10, 2243 (2018).

    Article 

    Google Scholar 

  • International Civil Aviation Organization. Report on the Feasibility of a Long-Term Aspirational Goal (LTAG) for International Civil Aviation CO2 Emission Reductions. (2022).

  • International Renewable Energy Agency. A pathway to decarbonise the shipping sector by 2050. (2021).

  • Traut, M. et al. CO 2 abatement goals for international shipping. Clim. Policy 18, 1066–1075 (2018).

    Article 

    Google Scholar 

  • Bergero, C. et al. Pathways to net-zero emissions from aviation. Nat. Sustain. 1–11, (2023).

  • Dray, L. et al. Cost and emissions pathways towards net-zero climate impacts in aviation. Nat. Clim. Chang. 12, 956–962 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pan, X., Wang, H., Wang, L. & Chen, W. Decarbonization of China’s transportation sector: in light of national mitigation toward the Paris Agreement goals. Energy 155, 853–864 (2018).

    Article 

    Google Scholar 

  • Zhang, H. & Chen, W. The role of biofuels in China’s transport sector in carbon mitigation scenarios. Energy Proc. 75, 2700–2705 (2015).

    Article 

    Google Scholar 

  • Müller-Casseres, E. et al. Are there synergies in the decarbonization of aviation and shipping? An integrated perspective for the case of Brazil. iScience 25, 105248 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tamba, M. et al. Economy-wide impacts of road transport electrification in the EU. Technol. Forecast. Soc. Change 182, 121803 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siskos, P., Zazias, G., Petropoulos, A., Evangelopoulou, S. & Capros, P. Implications of delaying transport decarbonisation in the EU: a systems analysis using the PRIMES model. Energy Policy 121, 48–60 (2018).

    Article 

    Google Scholar 

  • Yeh, S., Farrell, A., Plevin, R., Sanstad, A. & Weyant, J. Optimizing U.S. mitigation strategies for the light-duty transportation sector: what we learn from a bottom-up model. Environ. Sci. Technol. 42, 8202–8210 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • McCollum, D., Krey, V., Kolp, P., Nagai, Y. & Riahi, K. Transport electrification: a key element for energy system transformation and climate stabilization. Clim. Change 123, 651–664 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kyle, P. & Kim, S. H. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands. Energy Policy 39, 3012–3024 (2011).

    Article 
    CAS 

    Google Scholar 

  • de Blas, I., Mediavilla, M., Capellán-Pérez, I. & Duce, C. The limits of transport decarbonization under the current growth paradigm. Energy Strat. Rev. 32, 100543 (2020).

    Article 

    Google Scholar 

  • Yeh, S. et al. Detailed assessment of global transport-energy models’ structures and projections. Transp. Res. Part D 55, 294–309 (2017).

    Article 

    Google Scholar 

  • Edelenbosch, O. Y. et al. Decomposing passenger transport futures: comparing results of global integrated assessment models. Transp. Res. Part D 55, 281–293 (2017).

    Article 

    Google Scholar 

  • Mittal, S., Dai, H., Fujimori, S., Hanaoka, T. & Zhang, R. Key factors influencing the global passenger transport dynamics using the AIM/transport model. Transp. Res. Part D 55, 373–388 (2017).

    Article 

    Google Scholar 

  • Girod, B. et al. Climate impact of transportation a model comparison. Clim. Change 118, 595–608 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wise, M., Muratori, M. & Kyle, P. Biojet fuels and emissions mitigation in aviation: an integrated assessment modeling analysis. Transp. Res. Part D 52, 244–253 (2017).

    Article 

    Google Scholar 

  • International Chamber of Shipping. Shipping industry sets out bold plan to global regulator to deliver net zero by 2050. (2021).

  • International Air Transport Association. Net Zero Resolution. (2022).

  • Aspen Institute. Aspen Institute Launches coZEV Initiative with Major Corporations to Support Zero-Carbon Shipping. The Aspen Institute (2021).

  • International Civil Aviation Organization. States adopt net-zero 2050 global aspirational goal for international flight operations. International Civil Aviation Organization Newsroom (2022).

  • International Maritime Organization. Adoption of the Initial IMO Strategy on Reduction of GHG Emissions from Ships and Existing IMO Activity Related to Reducing GHG Emissions in the Shipping Sector (International Maritime Organization, 2018).

  • International Civil Aviation Organization. Resolution A40-18: Consolidated statement of continuing ICAO policies and practices related to environmental protection – Climate change (International Civil Aviation Organization, 2019).

  • Gambhir, A. et al. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat. Clim. Chang. 12, 88–96 (2022).

    Article 
    ADS 

    Google Scholar 

  • Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Chang. 13, 341–350 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article 

    Google Scholar 

  • Riahi, K. et al, Mitigation pathways compatible with long-term goals. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157926.005.

  • Lappas, A. & Heracleous, E. Production of biofuels via Fischer–Tropsch synthesis. In Handbook of Biofuels Production 549–593 (Elsevier, 2016). https://doi.org/10.1016/B978-0-08-100455-5.00018-7.

  • Balcombe, P. et al. How to decarbonise international shipping: options for fuels, technologies and policies. Energy Convers. Manag. 182, 72–88 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hertel, T. W. et al. Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60, 223–231 (2010).

    Article 

    Google Scholar 

  • Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

    Article 
    CAS 

    Google Scholar 

  • Calvin, K. et al. Bioenergy for climate change mitigation: scale and sustainability. GCB Bioenergy 13, 1346–1371 (2021).

    Article 

    Google Scholar 

  • Fargione, J. E., Plevin, R. J. & Hill, J. D. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. Syst. 41, 351–377 (2010).

    Article 

    Google Scholar 

  • IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds MassonDelmotte, V. et al.) 3−32 (Cambridge University Press, 2021), https://doi.org/10.1017/9781009157896.001.

  • Byers et al. AR6 Scenarios Database. Zenodo, (2022).

  • International Energy Agency. Global Hydrogen Review 2021. (2021).

  • IEA. Biofuels. IEA (2023).

  • Airbus. ZEROe: Towards the world’s first hydrogen-powered commercial aircraft, (2021).

  • Runge, P. et al. Economic comparison of different electric fuels for energy scenarios in 2035. Appl. Energy 233–234, 1078–1093 (2019).

    Article 
    ADS 

    Google Scholar 

  • Goldmann, A. et al. A Study on Electrofuels in Aviation. Energies 11, 392 (2018).

    Article 

    Google Scholar 

  • Global Maritime Forum. Ammonia as a shipping fuel. (2022).

  • Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gilbert, P. et al. Assessment of full life-cycle air emissions of alternative shipping fuels. J. Clean. Prod. 172, 855–866 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, R. & Fujimori, S. The role of transport electrification in global climate change mitigation scenarios. Environ. Res. Lett. 15, 034019 (2020).

    Article 
    ADS 

    Google Scholar 

  • Zhao, X., Taheripour, F., Malina, R., Staples, M. D. & Tyner, W. E. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Sci. Total Environ. 779, 146238 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Uludere Aragon, N. Z. et al. Sustainable land use and viability of biojet fuels. Nat. Sustain., (2022).

  • Drews, M. & Larsen, M. A. D. & Peña Balderrama, J. G. Projected water usage and land-use-change emissions from biomass production (2015–2050). Energy Strategy Rev. 29, 100487 (2020).

    Article 

    Google Scholar 

  • Vanek, F. M., Angenent, L. T., Banks, J. H., Daziano, R. A. & Turnquist, M. A. Sustainable transportation systems engineering (McGraw-Hill Education, 2014).

  • McCollum, D. L. et al. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nat. Energy 3, 664–673 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Woodcock, J. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374, 1930–1943 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Mishra, G. S. et al. Transportation Module of Global Change Assessment Model (GCAM) (GCAM, 2013).

  • Kyle, P., Fuhrman, J., Wolfram, P., O’Rourke, P. & Kholod, N. Core Model Proposal #359: Hydrogen and transportation technology update (Joint Global Change Research Institute, 2022).

  • Bond-Lamberty, B. et al. JGCRI/gcam-core: GCAM 6.0. Zenodo, (2022).

  • Zhou, Y., Luckow, P., Smith, S. J. & Clarke, L. Evaluation of global onshore wind energy potential and generation costs. Environ. Sci. Technol. 46, 7857–7864 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Smith, S. J., Kyle, G. P. & Stackhouse, P. W. Modeling the potential for thermal concentrating solar power technologies. Energy Policy 38, 7884–7897 (2010).

    Article 

    Google Scholar 

  • Carbon Engineering. AIR TO FUELSTM Technology. Carbon Engineering (2024).

  • Fuhrman, J. et al. The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environ. Res. Lett. 16, 114012 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • van der Giesen, C., Kleijn, R. & Kramer, G. J. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environ. Sci. Technol. 48, 7111–7121 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Speizer, S. et al. Integrated assessment modeling of a zero-emissions global transportation sector. Zenodo, (2024).

  • link

    By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *