• Sat. Apr 19th, 2025

Research on the mining of candidate genes for pepper fruit color and development of SNP markers based on SLAF-seq technology

Research on the mining of candidate genes for pepper fruit color and development of SNP markers based on SLAF-seq technology
  • Kim, S. et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46(3), 270–278 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Aguilar-Meléndez, A. et al. Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Am. J. Bot. 96(6), 1190–1202 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Frank, C. A. et al. Consumer preferences for color, price, and vitamin C content of bell peppers. HortTechnology 36(4), 795–800 (2001).

    MATH 

    Google Scholar 

  • Wang, L. et al. Pigment biosynthesis and molecular genetics of fruit color in pepper. Plants (Basel) 12(11), 2156 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tomlekova, N. et al. Mutation associated with orange fruit color increases concentrations of β-carotene in a sweet pepper variety (Capsicum annuum L.). Foods 10(6), 1225 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brand, A. et al. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor. Appl. Genet. 127(10), 2139–2148 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Barry, C. S. et al. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 147(1), 179–187 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Atkins, W. & Go Sherrard, A. XXV. The pigments of fruits in relation to some genetic experiments on capsicum annuum. In The Scientific Proceedings of the Royal Dublin Society. (The Society, 1915).

  • Deshpande, R. Studies in Indian chillies. (3) The inheritance of some characters in Capsicum annuum L. (1933).

  • Hurtado-Hernandez, H. & Smith, P. G. Inheritance of mature fruit color in Capsicum annuum L. J. Hered. 76(3), 211–213 (1985).

    Article 
    MATH 

    Google Scholar 

  • Huh, J. H. et al. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor. Appl. Genet. 102, 524–530. (2001).

    Article 
    CAS 

    Google Scholar 

  • Su, W. et al. Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. PLoS ONE 12(2), e0172066 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, X. et al. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8(3), e58700 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, D. et al. Genome-wide association study identifying candidate genes influencing important agronomic traits of flax (Linum usitatissimum L.) using SLAF-seq. Front. Plant Sci. 8, 2232 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Zhao, T. et al. Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene Cf-19, based on high-throughput sequencing technology. BMC Plant Biol. 16, 51 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, T. et al. High-resolution detection of quantitative trait loci for seven important yield-related traits in wheat (Triticum aestivum L.) using a high-density SLAF-seq genetic map. BMC Genom. Data 23(1), 37 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front. Plant Sci. 5, 768 (2014).

    PubMed 
    MATH 

    Google Scholar 

  • Wei, Q. et al. Construction of a SNP-based genetic map using SLAF-Seq and QTL analysis of morphological traits in eggplant. Front. Genet. 11, 178 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, N. et al. Construction of a high-density genetic map and identification of QTLs for cucumber mosaic virus resistance in pepper (Capsicum annuum L.) using specific length amplified fragment sequencing (SLAF-seq). Breed Sci. 68(2), 233–241 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X.-F. et al. High-density genetic map construction and QTL mapping of first flower node in pepper (Capsicum annuum L.). BMC Plant Biol. 19, 1–13 (2019).

    Google Scholar 

  • Healey, A. et al. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10, 21 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5), 589–595 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Raman, H. et al. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ. 39(6), 1228–1239 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42(4), 348–354 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ginestet, C. ggplot2: Elegant graphics for data analysis. J. Roy. Stat. Soc. 174(1), 245–246 (2011).

    Article 
    MATH 

    Google Scholar 

  • Turner, S. D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. Biorxiv, 2014.

  • Yangyang, D. et al. Integrated nr database in protein annotation system and its localization. Comput. Eng. 32(5), 71–72 (2006).

    MATH 

    Google Scholar 

  • Ashburner, M. et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 25, 25 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tatusov, R. L. et al. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28(1), 33–36 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa, M. et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32(Database issue), D277-280 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhang, Y. et al. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 13, 141 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhu, W. Y. et al. A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front. Plant Sci. 7, 437 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. et al. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics 15(1), 1086 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tao, J. et al. Construction of a high-density genetic map based on specific-locus amplified fragment sequencing and identification of loci controlling anthocyanin pigmentation in Yunnan red radish. Hortic. Res. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shu, H. et al. Fine mapping and identification of candidate genes for fruit color in pepper (Capsicum chinense). Sci. Hortic. 310, 111724 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, Y. et al. Transcriptome and metabolome analysis of color changes during fruit development of pepper (Capsicum baccatum). Int. J. Mol. Sci. 23(20), 12524 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Wu, L. et al. Mapping of CaPP2C35 involved in the formation of light-green immature pepper (Capsicum annuum L.) fruits via GWAS and BSA. Theor. Appl. Genet. 135(2), 591–604 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, X. et al. Association and genetic identification of loci for four fruit traits in tomato using InDel markers. Front. Plant Sci. 8, 1269 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Owens, B. F. et al. Genome-wide association study and pathway-level analysis of kernel color in maize. G3: Genes, Genomes, Genet. 9(6), 1945–1955 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Huang, H. et al. Genome-wide association analysis reveals a novel QTL CsPC1 for pericarp color in cucumber. BMC Genom. 23(1), 383 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Cericola, F. et al. Linkage disequilibrium and genome-wide association analysis for anthocyanin pigmentation and fruit color in eggplant. BMC Genom. 15, 1–15 (2014).

    Article 

    Google Scholar 

  • Wu, Z. et al. Genome-wide identification and expression profile of Dof transcription factor gene family in pepper (Capsicum annuum L.). Front. Plant Sci. 7, 574 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Römer, P. et al. Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiol. 150(4), 1697–1712 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, N. et al. Identification of CaPs locus involving in purple stripe formation on unripe fruit, reveals allelic variation and alternative splicing of R2R3-MYB transcription factor in pepper (Capsicum annuum L.). Front. Palnt Sci. 14, 1140851 (2023).

    Article 
    ADS 

    Google Scholar 

  • Ohno, S., Ueno, M. & Doi, M. Differences in the CaMYBA genome between anthocyanin-pigmented cultivars and non-pigmented cultivars in pepper (Capsicum annuum). Hort. J. 89(1), 30–36 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chiu, L.-W. et al. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol. 154(3), 1470–1480 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liu, G. S. et al. NAC transcription factor family regulation of fruit ripening and quality: A review. Cells 11(3), 525 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhu, M. et al. A new tomato NAC (N AM/A TAF1/2/C UC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 55(1), 119–135 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kou, X. et al. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening. Mol Genet Genom. 291, 1205–1217 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gao, Y. et al. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic. Res. (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, C.-C. et al. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. J. Agric. Food Chem. 64(27), 5454–5463 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bouvier, F. et al. Xanthophyll biosynthesis in chromoplasts: Isolation and molecular cloning of an enzyme catalyzing the conversion of 5, 6-epoxycarotenoid into ketocarotenoid. Plant J. 6(1), 45–54 (1994).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, J. et al. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci. Rep. 8(1), 13349 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *