• Fri. Jun 13th, 2025

Technology innovation and environmental outcomes of road transportation policy instruments

Technology innovation and environmental outcomes of road transportation policy instruments
  • Jaramillo, P. et al. Transport. In Climate Change 2022 – Mitigation of Climate Change (eds. Cheah, L. & Sims, R. E. H.) 1049–1160 (Cambridge University Press, 2023).

  • Boogaard, H. et al. Long-term exposure to traffic-related air pollution and non-accidental mortality: a systematic review and meta-analysis. Environ. Int. 176, 107916 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anenberg, S. C., Miller, J., Henze, D. K., Minjares, R. & Achakulwisut, P. The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015. Environ. Res. Lett. 14, 094012 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Markard, J., Raven, R. & Truffer, B. Sustainability transitions: an emerging field of research and its prospects. Res. Policy 41, 955–967 (2012).

    Article 

    Google Scholar 

  • Geels, F. W. The multi-level perspective on sustainability transitions: responses to seven criticisms. Environ. Innov. Soc. Transit 1, 24–40 (2011).

    Article 

    Google Scholar 

  • Axsen, J., Plötz, P. & Wolinetz, M. Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nat. Clim. Chang 10, 809–818 (2020).

    Article 
    ADS 

    Google Scholar 

  • Grubb, M. et al. Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO2 mitigation. Environ. Res. Lett. 16, 043007 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blanco, G. et al. Innovation, Technology Development and Transfer. In Climate Change 2022 – Mitigation of Climate Change (eds. Mahmoud, N. & Mizuno, E.) 1641–1726 (Cambridge University Press, 2023).

  • Rogge, K. S. & Reichardt, K. Policy mixes for sustainability transitions: an extended concept and framework for analysis. Res Policy 45, 1620–1635 (2016).

    Article 

    Google Scholar 

  • Bergek, A. & Berggren, C. The impact of environmental policy instruments on innovation: a review of energy and automotive industry studies. Ecol. Econ. 106, 112–123 (2014).

    Article 

    Google Scholar 

  • Peñasco, C., Anadón, L. D. & Verdolini, E. Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments. Nat. Clim. Chang 11, 257–265 (2021).

    Article 
    ADS 

    Google Scholar 

  • Gallagher, K. S., Holdren, J. P. & Sagar, A. D. Energy-technology innovation. Annu. Rev. Environ. Resour. 31, 193–237 (2006).

    Article 

    Google Scholar 

  • Jaffe, A. B., Newell, R. G. & Stavins, R. N. Environmental policy and technological change. Environ. Resour. Econ. 22, 41–70 (2002).

    Article 

    Google Scholar 

  • Neij, L. & Åstrand, K. Outcome indicators for the evaluation of energy policy instruments and technical change. Energy Policy 34, 2662–2676 (2006).

    Article 

    Google Scholar 

  • Kern, F., Rogge, K. S. & Howlett, M. Policy mixes for sustainability transitions: new approaches and insights through bridging innovation and policy studies. Res. Policy 48, 103832 (2019).

    Article 

    Google Scholar 

  • Bhardwaj, C., Axsen, J., Kern, F. & McCollum, D. Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps. Transp. Res. Part A Policy Pract. 135, 309–326 (2020).

    Article 

    Google Scholar 

  • van den Bergh, J. et al. Designing an effective climate-policy mix: accounting for instrument synergy. Clim. Policy 21, 745–764 (2021).

    Article 

    Google Scholar 

  • Silvia, C. & Krause, R. M. Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: an agent-based model. Energy Policy 96, 105–118 (2016).

    Article 

    Google Scholar 

  • Springel, K. Network externality and subsidy structure in two-sided markets: evidence from electric vehicle incentives. Am. Econ. J. Econ. Policy 13, 393–432 (2021).

    Article 

    Google Scholar 

  • Tran, M., Banister, D., Bishop, J. D. K. & McCulloch, M. D. Simulating early adoption of alternative fuel vehicles for sustainability. Technol. Forecast Soc. Change 80, 865–875 (2013).

    Article 

    Google Scholar 

  • Lepitzki, J. & Axsen, J. The role of a low carbon fuel standard in achieving long-term GHG reduction targets. Energy Policy 119, 423–440 (2018).

    Article 

    Google Scholar 

  • Whistance, J., Thompson, W. & Meyer, S. Interactions between California’s low carbon fuel standard and the national renewable fuel standard. Energy Policy 101, 447–455 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bryngemark, E. & Söderholm, P. Green industrial policies and domestic production of biofuels: an econometric analysis of OECD countries. Environ. Econ. Policy Stud. 24, 225–261 (2022).

    Article 

    Google Scholar 

  • Bento, A. M. & Klotz, R. Climate policy decisions require policy-based lifecycle analysis. Environ. Sci. Technol. 48, 5379–5387 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • de Gorter, H. & Just, D. R. The economics of a blend mandate for biofuels. Am. J. Agric Econ. 91, 738–750 (2009).

    Article 

    Google Scholar 

  • Breed, A. K., Speth, D. & Plötz, P. CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe. Energy Policy 159, 112640 (2021).

  • Chen, K., Zhao, F., Hao, H., Liu, Z. & Liu, X. Hierarchical optimization decision-making method to comply with china’s fuel consumption and new energy vehicle credit regulations. Sustainability 13, 7842 (2021).

  • Jenn, A., Azevedo, I. L. & Michalek, J. J. Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions. Transp. Res. Part A Policy Pract. 124, 396–407 (2019).

    Article 

    Google Scholar 

  • Liu, Y. & Helfand, G. E. The Alternative Motor Fuels Act, alternative-fuel vehicles, and greenhouse gas emissions. Transp. Res. Part A Policy Pract. 43, 755–764 (2009).

    Article 

    Google Scholar 

  • Ross Morrow, W., Gallagher, K. S., Collantes, G. & Lee, H. Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector. Energy Policy 38, 1305–1320 (2010).

    Article 

    Google Scholar 

  • Zhang, H., Zhao, F., Hao, H. & Liu, Z. Effect of chinese corporate average fuel consumption and new energy vehicle dual-credit regulation on passenger cars average fuel consumption analysis. Int. J. Environ. Res Public Health 18, 7218 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, F., Liu, F., Liu, Z. & Hao, H. The correlated impacts of fuel consumption improvements and vehicle electrification on vehicle greenhouse gas emissions in China. J. Clean. Prod. 207, 702–716 (2019).

    Article 

    Google Scholar 

  • Wicki, M., Fesenfeld, L. & Bernauer, T. In search of politically feasible policy-packages for sustainable passenger transport: insights from choice experiments in China, Germany, and the USA. Environ. Res. Lett. 14, 084048 (2019).

    Article 
    ADS 

    Google Scholar 

  • Holzinger, K., Knill, C. & Sommerer, T. Is there convergence of national environmental policies? An analysis of policy outputs in 24 OECD countries. Environ. Polit. 20, 20–41 (2011).

    Article 

    Google Scholar 

  • Berggren, C. & Magnusson, T. Reducing automotive emissions—the potentials of combustion engine technologies and the power of policy. Energy Policy 41, 636–643 (2012).

    Article 

    Google Scholar 

  • Clerides, S. & Zachariadis, T. The effect of standards and fuel prices on automobile fuel economy: an international analysis. Energy Econ. 30, 2657–2672 (2008).

    Article 

    Google Scholar 

  • Lee, J., Veloso, F. M., Hounshell, D. A. & Rubin, E. S. Forcing technological change: a case of automobile emissions control technology development in the US. Technovation 30, 249–264 (2010).

    Article 

    Google Scholar 

  • Lee, J., Veloso, F. M. & Hounshell, D. A. Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry. Res. Policy 40, 1240–1252 (2011).

    Article 

    Google Scholar 

  • Palage, K., Lundmark, R. & Söderholm, P. The impact of pilot and demonstration plants on innovation: the case of advanced biofuel patenting in the European Union. Int. J. Prod. Econ. 210, 42–55 (2019).

    Article 

    Google Scholar 

  • Craglia, M. & Cullen, J. Do technical improvements lead to real efficiency gains? Disaggregating changes in transport energy intensity. Energy Policy 134, 110991 (2019).

    Article 
    CAS 

    Google Scholar 

  • Reynaert, M. Abatement strategies and the cost of environmental regulation: emission standards on the European car market. Rev. Econ. Stud. 88, 454–488 (2021).

    Article 

    Google Scholar 

  • Pierce, L. & Snyder, J. A. Discretion and manipulation by experts: evidence from a vehicle emissions policy change. B E J Econ. Anal. Policy 12, (2012).

  • Hu, K., Chopra, S. & Chen, Y. The effect of tightening standards on automakers’ non‐compliance. Prod. Oper. Manag. 30, 3094–3115 (2021).

    Article 

    Google Scholar 

  • Ko, S. et al. NOx emissions from Euro 5 and Euro 6 heavy-duty diesel vehicles under real driving conditions. Energies 13, 218 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gerard, D. & Lave, L. B. Implementing technology-forcing policies: The 1970 Clean Air Act Amendments and the introduction of advanced automotive emissions controls in the United States. Technol. Forecast Soc. Change 72, 761–778 (2005).

    Article 

    Google Scholar 

  • Skeete, J.-P. Examining the role of policy design and policy interaction in EU automotive emissions performance gaps. Energy Policy 104, 373–381 (2017).

  • Leinert, S., Daly, H., Hyde, B. & Ó Gallachóir, B. Co-benefits? Not always: quantifying the negative effect of a CO2-reducing car taxation policy on NO emissions. Energy Policy 63, 1151–1159 (2013).

    Article 

    Google Scholar 

  • Miravete, E. J., Moral, M. J. & Thurk, J. Fuel taxation, emissions policy, and competitive advantage in the diffusion of European diesel automobiles. Rand. J. Econ. 49, 504–540 (2018).

  • Dechezleprêtre, A., Neumayer, E. & Perkins, R. Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents. Res. Policy 44, 244–257 (2015).

    Article 

    Google Scholar 

  • Fu, M. & Andrew Kelly, J. Carbon related taxation policies for road transport: Efficacy of ownership and usage taxes, and the role of public transport and motorist cost perception on policy outcomes. Transp. Policy 22, 57–69 (2012).

    Article 

    Google Scholar 

  • van Eck, G., de Jong, G., Wesseling, B. & van Meerkerk, J. Simulating the impact of tax incentives using a type choice model for lease cars. Case Stud. Transp. Policy 7, 814–822 (2019).

    Article 

    Google Scholar 

  • Rhodes, E., Scott, W. A. & Jaccard, M. Designing flexible regulations to mitigate climate change: a cross-country comparative policy analysis. Energy Policy 156, 112419 (2021).

  • Yeh, S., Burtraw, D., Sterner, T. & Greene, D. Tradable performance standards in the transportation sector. Energy Econ 102, 105490 (2021).

  • Wang, Y. & Miao, Q. The impact of the corporate average fuel economy standards on technological changes in automobile fuel efficiency. Resour. Energy Econ. 63, 101211 (2021).

  • Zhou, N., Levine, M. D. & Price, L. Overview of current energy-efficiency policies in China. Energy Policy 38, 6439–6452 (2010).

    Article 

    Google Scholar 

  • Wagner, D. V., An, F. & Wang, C. Structure and impacts of fuel economy standards for passenger cars in China. Energy Policy 37, 3803–3811 (2009).

    Article 

    Google Scholar 

  • Cottes, J. Technological variation and the US renewable fuel standard. Technol. Anal. Strateg Manag 26, 385–399 (2014).

    Article 

    Google Scholar 

  • Ito, K. & Sallee, J. M. The economics of attribute-based regulation: theory and evidence from fuel economy standards. Rev. Econ. Stat. 100, 319–336 (2018).

    Article 

    Google Scholar 

  • Sen, B., Noori, M. & Tatari, O. Will Corporate Average Fuel Economy (CAFE) standard help? Modeling CAFE’s impact on market share of electric vehicles. Energy Policy 109, 279–287 (2017).

  • Thorpe, S. G. Fuel economy standards, new vehicle sales, and average fuel efficiency. J. Regul. Econ. 11, 311–326 (1997).

    Article 

    Google Scholar 

  • Ullman, D. F. A difficult road ahead: Fleet fuel economy, footprint-based CAFE compliance, and manufacturer incentives. Energy Econ. 57, 94–105 (2016).

    Article 

    Google Scholar 

  • Whitefoot, K. S. & Skerlos, S. J. Design incentives to increase vehicle size created from the U.S. footprint-based fuel economy standards. Energy Policy 41, 402–411 (2012).

    Article 

    Google Scholar 

  • Sallee, J. M. & Slemrod, J. Car notches: strategic automaker responses to fuel economy policy. J. Public Econ. 96, 981–999 (2012).

    Article 

    Google Scholar 

  • Hao, H., Wang, S., Liu, Z. & Zhao, F. The impact of stepped fuel economy targets on automaker’s light-weighting strategy: The China case. Energy 94, 755–765 (2016).

    Article 

    Google Scholar 

  • Tanaka, S. When tax incentives drive illicit behavior: the manipulation of fuel economy in the automobile industry. J. Environ. Econ. Manag. 104, 102367 (2020).

    Article 

    Google Scholar 

  • Sheehan-Connor, D. Environmental policy and vehicle safety: the impact of Gasoline Taxes. Econ. Inq. 53, 1606–1629 (2015).

    Article 

    Google Scholar 

  • Sæther, S. R. Mobility at the crossroads – electric mobility policy and charging infrastructure lessons from across Europe. Transp. Res Part A Policy Pract. 157, 144–159 (2022).

    Article 

    Google Scholar 

  • Egnér, F. & Trosvik, L. Electric vehicle adoption in Sweden and the impact of local policy instruments. Energy Policy 121, 584–596 (2018).

    Article 

    Google Scholar 

  • Li, S., Tong, L., Xing, J. & Zhou, Y. The market for electric vehicles: indirect network effects and policy design. J. Assoc. Environ. Resour. Econ. 4, 89–133 (2017).

    Google Scholar 

  • Huang, H., Khanna, M., Önal, H. & Chen, X. Stacking low carbon policies on the renewable fuels standard: Economic and greenhouse gas implications. Energy Policy 56, 5–15 (2013).

    Article 

    Google Scholar 

  • Karmarkar-Deshmukh, R. & Pray, C. E. Private sector innovation in biofuels in the United States: induced by prices or policies? AgBioForum 12, 141–148 (2009).

    Google Scholar 

  • Kessler, J., Sperling, D. & Tracking, U. S. biofuel innovation through patents. Energy Policy 98, 97–107 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ebadian, M., van Dyk, S., McMillan, J. D. & Saddler, J. Biofuels policies that have encouraged their production and use: an international perspective. Energy Policy 147, 111906 (2020).

    Article 

    Google Scholar 

  • Meckling, J., Sterner, T. & Wagner, G. Policy sequencing toward decarbonization. Nat. Energy 2, 918–922 (2017).

    Article 
    ADS 

    Google Scholar 

  • Stokes, L. C. & Breetz, H. L. Politics in the U.S. energy transition: case studies of solar, wind, biofuels and electric vehicles policy. Energy Policy 113, 76–86 (2018).

    Article 

    Google Scholar 

  • Wesseling, J. H., Farla, J. C. M. & Hekkert, M. P. Exploring car manufacturers’ responses to technology-forcing regulation: The case of California’s ZEV mandate. Environ. Innov. Soc. Transit. 16, 87–105 (2015).

  • Markard, J., Hekkert, M. & Jacobsson, S. The technological innovation systems framework: Response to six criticisms. Environ. Innov. Soc. Transit 16, 76–86 (2015).

    Article 

    Google Scholar 

  • Bohnsack, R., Kolk, A. & Pinkse, J. Catching recurring waves: low-emission vehicles, international policy developments and firm innovation strategies. Technol. Forecast Soc. Change 98,71–87 (2015).

  • Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang 5, 329–332 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ou, S. et al. The dual-credit policy: quantifying the policy impact on plug-in electric vehicle sales and industry profits in China. Energy Policy 121, 597–610 (2018).

    Article 

    Google Scholar 

  • Inflation Reduction Act of 2023 (118th Congress, 1st session, Washington, D.C., 2023).

  • Lemphers, N., Bernstein, S., Hoffmann, M. & Wolfe, D. A. Rooted in place: regional innovation, assets, and the politics of electric vehicle leadership in California, Norway, and Québec. Energy Res Soc. Sci. 87, 102462 (2022).

    Article 

    Google Scholar 

  • Collantes, G. & Sperling, D. The origin of California’s zero emission vehicle mandate. Transp. Res Part A Policy Pract. 42, 1302–1313 (2008).

    Article 

    Google Scholar 

  • Döbbeling-Hildebrandt, N. et al. Systematic review and meta-analysis of ex-post evaluations on the effectiveness of carbon pricing. Nat. Commun. 15, 4147 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Breetz, H. L. Do big goals lead to bad policy? How policy feedback explains the failure and success of cellulosic biofuel in the United States. Energy Res Soc. Sci. 69, 101755 (2020).

    Article 

    Google Scholar 

  • Milovanoff, A., Posen, I. D. & MacLean, H. L. Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nat. Clim. Chang 10, 1102–1107 (2020).

    Article 
    ADS 

    Google Scholar 

  • Sheldon, T. L. & Dua, R. Measuring the cost-effectiveness of electric vehicle subsidies. Energy Econ. 84, 104545 (2019).

    Article 

    Google Scholar 

  • Weiss, M., Cloos, K. C. & Helmers, E. Energy efficiency trade-offs in small to large electric vehicles. Environ. Sci. Eur. 32, 46 (2020).

    Article 
    CAS 

    Google Scholar 

  • Michalek, J. J. et al. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits. Proc. Natl Acad. Sci. 108, 16554–16558 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harvey, L. D. D. Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060. Appl Energy 212, 663–679 (2018).

    Article 
    ADS 

    Google Scholar 

  • Nordelöf, A., Messagie, M., Tillman, A.-M., Ljunggren Söderman, M. & Van Mierlo, J. Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int J. Life Cycle Assess. 19, 1866–1890 (2014).

    Article 

    Google Scholar 

  • Leipprand, A., Flachsland, C. & Pahle, M. Starting low, reaching high? Sequencing in EU climate and energy policies. Environ. Innov. Soc. Transit 37, 140–155 (2020).

    Article 

    Google Scholar 

  • Harrison, R. M. et al. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: a review. Atmos. Environ. 262, 118592 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bonilla, D. & Foxon, T. Demand for New Car Fuel Economy in the UK, 1970-2005. J. Transp. Econ. Policy 43, 55–83 (2009).

    Google Scholar 

  • Johnstone, N., Haščič, I. & Popp, D. Renewable energy policies and technological innovation: evidence based on patent counts. Environ. Resour. Econ. 45, 133–155 (2010).

    Article 

    Google Scholar 

  • Rennings, K., Ludwig Brockmann, K. & Bergmann, H. Voluntary agreements in environmental protection: experiences in Germany and future perspectives. Bus. Strategy Environ. 6, 245–263 (1997).

    Article 

    Google Scholar 

  • Sunnevåg, K. Voluntary agreements and the Incentives for innovation. Environ. Plan C Gov. Policy 18, 555–573 (2000).

    Article 

    Google Scholar 

  • Wilson, C., Grubler, A., Gallagher, K. S. & Nemet, G. F. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Chang 2, 780–788 (2012).

    Article 
    ADS 

    Google Scholar 

  • Wilson, C. Input, output, and outcome metrics for assessing energy technology innovation. In Energy Technology Innovation 75–88 (Cambridge University Press, 2013).

  • Denyer, D., Tranfield, D. & van Aken, J. E. Developing design propositions through research synthesis. Organ. Stud. 29, 393–413 (2008).

    Article 

    Google Scholar 

  • Rosenbloom, D., Markard, J., Geels, F. W. & Fuenfschilling, L. Why carbon pricing is not sufficient to mitigate climate change—and how “sustainability transition policy” can help. Proc. Natl Acad. Sci. 117, 8664–8668 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nemet, G. F. How Solar Energy Became Cheap (Routledge, Abingdon, Oxon; New York, NY: Routledge, 2019).

  • Ziegler, M. S. & Trancik, J. E. Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 14, 1635–1651 (2021).

    Article 

    Google Scholar 

  • Ziegler, M. S. & Trancik, J. E. Data series for lithium-ion battery technologies. (Harvard Dataverse, 2021).

  • link

    By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *